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Abstract 

A hybrid density-potential functional of an electrochemical interface that encompasses 

major effects in the contacting metal and electrolyte phases is formulated. Variational 

analysis of this functional yields a grand-canonical model of the electrochemical double 

layer (EDL). Specifically, metal electrons are described using the Thomas-Fermi-Dirac-

Wigner theory of an inhomogeneous electron gas. The electrolyte solution is treated 

classically at the mean-field level, taking into account electrostatic interactions, ion size 

effects, and nonlinear solvent polarization. The model uses parameterizable force 

relations to describe the short-range forces between metal cationic cores, metal 

electrons as well as electrolyte ions and solvent molecules. Therefore, the gap between 

the metal skeleton and the electrolyte solution, key to properties of the EDL, varies 

consistently as a function of the electrode potential. Partial charge transfer in the 

presence of ion specific adsorption is described using an Anderson-Newns type theory. 

This model is parameterized with density functional theory calculations, compared with 

experimental data, and then employed to unravel several interfacial properties of 

fundamental significance in electrochemistry. In particular, a closer approach of the 

solution phase towards the metal surface, e.g. caused by a stronger ion specific 

adsorption, decreases the potential of zero charge and elevates the double-layer 

capacitance curve. In addition, the ion specific adsorption can lead to surface 

depolarization of ions. The present model represents a viable framework to model 

(reactive) EDLs under the constant potential condition, which can be used to understand 

multifaceted EDL effects in electrocatalysis. 
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1 Introduction 

An electrochemical cell consists of two electrodes separated by an electrolyte solution. 

When the two electrodes are connected via metal wires with a potentiostat, the electric 

potential difference, Δ𝜙𝜙M, between the two electrodes can be varied. Variation of Δ𝜙𝜙M 

provides a handle to control the electron flow between the two electrodes. For ideally 

polarizable electrodes, electron transfer reactions are prohibited regardless of Δ𝜙𝜙M . 

Therefore, a net flow of electrons from one electrode to the other results in two electrified 

electrodes carrying an excess surface charge of the same magnitude but opposite sign, 

constituting a capacitive response. The excess electrode charge attracts via the coulombic 

force counterions and repels for the same reason coions in the electrolyte solution, 

generating a nonelectroneutral layer in the vicinity of the electrified electrode. This layer 

is termed the diffuse layer, whose thickness is determined by the balance between 

coulombic and entropic forces. The electrochemical (electric) double layer (EDL) refers to 

the three-dimensional interfacial region between the electrified electrode and the nearby 

solution. In a strict sense, the EDL is not an interface (a two-dimensional sharp boundary 

between two phases), but rather an interphase (a three-dimensional thin region between 

two phases).1 

The EDL is of central importance in electrochemistry because the potential and ion density 

distribution in this microscopic region determine the charging response and the charge 

transfer kinetics at the electrode, i.e., the phenomena that lie at the heart of 

electrochemistry. Albeit being the most important component in any electrochemical cell, 

the EDL remains notoriously difficult to grasp. The gaps in understanding are due to the 

fact that huge spatial variations in the electric potential, charge density and solvent 

polarization occur in the EDL that is only several Å to nm thick, too complex for first-

principles simulation based on density functional theory (DFT), yet too thin for classical 
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continuum approaches. Small uncertainties in relevant physical approaches may generate 

huge variations in the results obtained. 

Modelling the EDL has a long history which can be traced back to Helmholtz (1879) who 

viewed the EDL as a planar plate capacitor.2 A large number of EDL models have been 

developed in the past, and they can be broadly divided into three categories, Gouy-

Chapman-Stern (GCS) models,3-15 Jellium models,16-29 and first-principle models that 

utilize DFT calculations.30-38 In Figure 1, we compare these three categories of EDL 

models in terms of the type of the statistical ensemble (canonical/grand canonical), the 

treatment of the electrolyte solution (implicit/explicit), and the treatment of metal 

electrons (implicit/explicit). 

Gouy-Chapman-Stern (GCS) model is a classical EDL model which conceptualizes the 

EDL as a serial connection of a rigid Helmholtz plane which corresponds to the plane of 

the closest approach of solvated ions, and the Gouy-Chapman diffuse layer.3-5 

Subsequent improvements over the GCS model take into account ion steric effects,6, 10-11 

specific adsorption and chemisorption,9, 14-15, 39 solvent polarization effects that lower 

the dielectric permittivity of near-surface solvent layers,40-41 and nonlocal short-range 

correlations that become increasingly nontrivial in concentrated solutions.12, 42-43 A 

commonality shared by GCS-like models is that they use a continuum description of the 

electrolyte region, which is essentially treated as a coulombic fluid, while the metal is 

treated as a featureless boundary. If the metal is treated either as a constant-potential or 

a constant-charge boundary, GCS-like models correspond to either a grand-canonical or 

a canonical ensemble. Changing the statistical ensemble from canonical to grand 

canonical thus implies a different boundary condition. 

Jellium models are centered around metal electronic effects that are neglected in GCS-

like models. The metal side is treated as an interacting inhomogeneous electron gas 
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situated against a positive background charge due to metal cationic cores.44-45 The 

principal motivation of jellium models is to understand the origin of the Helmholtz 

capacitance.16-19, 29 The electrolyte solution is simply represented by a number of dipoles 

interacting with metal electrons,18-19 or treated using the Gouy-Chapman model, e.g. 

ref.17. With the help of trial functions, jellium models allow approximate analytical 

solutions of the metal electron density and electric potential distributions under the 

condition of constant charge.22, 26 

First-principles models that utilize DFT-based calculations aim at an ab initio simulation 

of the EDL by using a set of self-consistent nonlocal integro-differential equations to 

solve the electronic structure problem for atoms and molecules.46 The problem with the 

DFT-based approach in simulating EDLs is that it, in its default configuration, simulates a 

canonical system with a fixed number of particles, while the EDL is a grand-canonical 

ensemble with the particle densities modulated by potentials.47-48 Momentous research 

efforts are striving, with a varying level of success, to realize grand-canonical ab initio 

simulations of the EDL, see review articles.36, 38, 49 The computational costs are, at least 

for the moment, forbiddingly high. 
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Figure 1. Comparative illustration of three categories of EDL models in three vectors 

corresponding to the treatment of the solution, the treatment of the metal, and the 

statistical ensemble:(a) Gouy-Chapman-Stern model, (b) Jellium model, (c) DFT-based 

first-principles model, and (d) the model developed in this work. 

 

It is desirable to develop a grand-canonical EDL model that encompasses major effects 

in the contacting metal and electrolyte phases while retaining the simplicity of GCS-like 

models, which is the motivation of this work. An EDL model of this sort, termed Jellium-
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Poisson-Boltzmann model, has been developed recently by us.50 However, the previous 

model did not consider strong electronic interactions between metal electrons and 

solution species, thus cannot be used to describe reactive EDLs, e.g., the EDL with ion 

specific adsorption. In addition, the previous model used a fixed value for the width of 

the gap between the metal skeleton and the electrolyte solution, and neglected the 

discreteness of metal cationic cores. The current work improves over the previous one in 

these aspects. Consequently, the new model allows the metal-solution gap width to vary 

as a function of the metal electric potential, depicts oscillating distributions of the 

electric potential in the metal phase, captures key features of the EDL with ion specific 

adsorption, and sheds new light on several interfacial properties of fundamental 

significance in electrochemistry. 

 

2 Model Development 

2.1 System specifications 

Figure 2 presents a schematic illustration of the EDL. The metal side is connected with an 

electron reservoir. The electrochemical potential of electrons in the metal is an 

independent variable, which is adjusted by varying the metal electric potential (𝜙𝜙M). The 

electrolyte solution is connected with a large reservoir containing cations, anions, and 

solvent molecules. Cations and anions are dressed with solvation shells. Solvent 

molecules forming the ions’ solvation shell are distinguished from unbounded ones 

since their orientational and translational motions are restricted. The reference value of 

electric potential is defined in the solution bulk, namely, 𝜙𝜙Sb = 0 where the superscript b 

represents the bulk phase. The electrochemical potentials of ions and solvent molecules, 

denoted as 𝜇𝜇�i, are adjusted by varying particle concentrations, 𝑛𝑛𝑖𝑖𝑏𝑏. The volume of the 

EDL, V, is fixed and much smaller than that of the reservoirs. Therefore, the temperature 
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of the EDL is constant, T, as the EDL can exchange energy with the two large heat 

reservoirs. The densities of particles in the EDL are modulated by electrochemical 

potentials of particles in the two reservoirs via free particle exchange. 

 

Figure 2. Schematic illustration of the EDL. The metal side is connected with an electron 

reservoir to hold the electrochemical potential of electrons constant. The solution side is 

connected with an electrolyte reservoir to hold the electrochemical potentials of ions 

and solvent constant. The solvation shells of cations and anions are explicitly shown. 

Bounded and free solvent molecules are treated separately. 

 

Given V, T and 𝜇𝜇�i, with 𝑖𝑖 indexing for metal electrons (e), metal cationic cores (mc), 

solution cations (c), solution anions (a), and solvent molecules (s), the EDL is a grand-

canonical ensemble. A microstate of the EDL is defined by a certain distribution of 

particle densities, {𝑛𝑛𝑖𝑖}. When 𝜙𝜙M varies, distributions of electric potential from the metal 

bulk to the solution bulk change accordingly, rearranging particle densities and the 

orientational configuration of solvent dipoles. The primary target of the present model 
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is to obtain the distributions of electric potential and particle densities in the EDL as a 

function of 𝜙𝜙M, from which the surface free charge density and the double-layer 

capacitance can be derived. 

The probability of finding a grand-canonical ensemble in a microstate with particle 

densities {𝑛𝑛𝑖𝑖} is given by, 

𝑝𝑝��𝑉𝑉,𝑇𝑇, {𝜇𝜇�i}, {𝑛𝑛𝑖𝑖}�� =
1
𝑍𝑍

exp(−𝛽𝛽Ω), (1) 

where 𝛽𝛽 = (𝑘𝑘B𝑇𝑇)−1, 𝑍𝑍 is a normalization factor, and Ω is the grand potential, expressed 

as, 

Ω��𝑉𝑉,𝑇𝑇, {𝜇𝜇�i}, {𝑛𝑛𝑖𝑖}�� = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 − �𝑑𝑑𝑉𝑉 𝜇𝜇�i𝑛𝑛𝑖𝑖, (2) 

with 𝑈𝑈 being the internal, 𝑇𝑇 the entropy, 𝑑𝑑𝑉𝑉 a volume unit of the space. 

The most probable microstate of the EDL corresponds to the minimum of Ω. The relative 

fluctuation of particle numbers deviating from the most probable microstate varies as 

(𝑁𝑁)−
1
2 with 𝑁𝑁 being the number of particles in the EDL.51 In actual situations, 𝑁𝑁 is on the 

order of 𝑁𝑁A (Avogadro constant), thus the relative fluctuation is, for practical 

consideration, infinitesimal and can be neglected. 

2.2 Grand potential with approximations 

The task of describing the EDL is translated thus to that of obtaining the minimum of 

Ω��𝑉𝑉,𝑇𝑇, {𝜇𝜇�𝑖𝑖}, {𝑛𝑛𝑖𝑖}��. To this end, an explicit expression of Ω��𝑉𝑉,𝑇𝑇, {𝜇𝜇�i}, {𝑛𝑛𝑖𝑖}�� is needed. As 

the EDL is a large-size, quantum many-body system, approximations are required, on 

varying levels, for any workable calculation. In the following, we treat first 𝑈𝑈 and then 𝑇𝑇. 



10 
 

The total internal energy of the EDL is the sum of kinetic energy and potential energy of 

all particles interacting with each other. In line with the Born–Oppenheimer 

approximation, the nuclear kinetic energy is neglected in the electronic Hamiltonian. The 

solution side is treated as a collection of charged particles and solvent dipoles in the 

context of classical electrostatics. Short-range interactions between the metal and 

solution species are described using parameterizable force fields. 

The total internal energy can be decomposed into four terms, 

𝑈𝑈 = 𝑇𝑇ni[𝑛𝑛𝑒𝑒 ,∇𝑛𝑛𝑒𝑒 , … ] + 𝑈𝑈xc[𝑛𝑛𝑒𝑒 ,∇𝑛𝑛𝑒𝑒 , … ] + 𝑈𝑈es[{𝑛𝑛𝑖𝑖},𝜙𝜙,∇𝜙𝜙] 

+𝑈𝑈nu[𝑟𝑟, {𝑛𝑛𝑖𝑖}] + 𝑈𝑈ion[{𝑛𝑛𝑖𝑖}], 
(3) 

𝑇𝑇ni[𝑛𝑛𝑒𝑒 ,∇𝑛𝑛𝑒𝑒 , … ] is the kinetic energy of metal electrons, which is a functional of the metal 

electron density, 𝑛𝑛𝑒𝑒 , and its gradients, ∇𝑛𝑛𝑒𝑒 , ∇2𝑛𝑛𝑒𝑒 , etc. Herein, we adopt the extended 

Thomas-Fermi theory with the lowest-order gradient correction,52-54 

𝑇𝑇ni[𝑛𝑛𝑒𝑒 ,∇𝑛𝑛𝑒𝑒 , … ] = �𝑑𝑑𝑉𝑉 𝜉𝜉𝑎𝑎02 �𝑐𝑐1𝑛𝑛𝑒𝑒
5
3 + 𝑐𝑐2

(∇𝑛𝑛𝑒𝑒)2

𝑛𝑛𝑒𝑒
�, (4) 

where 𝑎𝑎0 is the Bohr radius, 𝜉𝜉 = 𝑒𝑒02/(4𝜋𝜋𝜖𝜖0𝑎𝑎0) is the reference energy with 𝑒𝑒0 being the 

unit of electrical charge, and 𝜖𝜖0 is the vacuum permittivity; 𝑐𝑐1 = 3
10

(3𝜋𝜋2)
2
3 and 𝑐𝑐2 = 1

72
 are 

two coefficients. 

𝑈𝑈xc[𝑛𝑛𝑒𝑒 ,∇𝑛𝑛𝑒𝑒 , … ] is the exchange-correlation energy, which is approximated as,52 

𝑈𝑈xc[𝑛𝑛𝑒𝑒 ,∇𝑛𝑛𝑒𝑒 , … ] = �𝑑𝑑𝑉𝑉 𝜉𝜉𝑎𝑎0 �𝑐𝑐3𝑛𝑛𝑒𝑒
4
3 + 𝑐𝑐4𝑛𝑛𝑒𝑒

4
3 1

𝑐𝑐5 + 𝑎𝑎0𝑛𝑛𝑒𝑒
1
3
�, (5) 
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where the first term in the bracket, with 𝑐𝑐3 = −3
4
�3
𝜋𝜋
�
1
3, represents the exchange energy of 

a uniform electron gas, the second term, with 𝑐𝑐4 = −0.056, 𝑐𝑐5 = 0.079, is Wigner’s 

classical result.55 

Eqs. (4) and (5) constitute the Thomas-Fermi-Dirac-Wigner (TFDW) theory of the 

inhomogeneous electron gas, which is the progenitor of modern density functional 

theory (DFT).56, 57 As for the Ag(111)-vacuum system, we compare the present model 

based on TFDW theory with modern DFT calculations in Figure S1 in the Supporting 

Information. Our results show that the TFDW theory does a sufficient job of describing 

the distributions of electron density and electric potential in the metal bulk and near the 

metal surface, which is in line with jellium models for metal surfaces.26, 29, 44-45, 56. The 

main deficiency of the TFDW lies in the treatment of the exchange-correlation energy, 

𝑈𝑈𝑥𝑥𝑥𝑥, which, albeit being a relative small fraction of the total energy, is very important for 

chemical bond formation.46 In this work, this problem is amended expediently by using 

the Anderson-Newns theory of chemisorption.57-58 

𝑈𝑈es[{𝑛𝑛𝑖𝑖},𝜙𝜙,∇𝜙𝜙] is the electrostatic potential energy of the EDL,11, 50 

𝑈𝑈es[{𝑛𝑛𝑖𝑖},𝜙𝜙,∇𝜙𝜙] = �𝑑𝑑𝑉𝑉 �−
1
2
𝜖𝜖∞𝐸𝐸2 + 𝑒𝑒0𝜙𝜙 � � 𝑧𝑧𝑖𝑖𝑛𝑛𝑖𝑖

𝑖𝑖=e,mc,a,c

�

− 𝑛𝑛s𝑘𝑘𝐵𝐵𝑇𝑇 ln �
sinh(𝛽𝛽𝑝𝑝𝐸𝐸)

𝛽𝛽𝑝𝑝𝐸𝐸
��, 

(6) 

where 𝐸𝐸 = |∇𝜙𝜙| is the absolute value of the electric field, 𝜖𝜖∞ the optical permittivity, 𝑧𝑧𝑖𝑖 

the charge number, and 𝑝𝑝 the dipole moment of solvent molecules. In general, the 𝑧𝑧𝑖𝑖 

parameters are position-dependent due to short-range electronic interactions with the 

metal. This electrosorption phenomenon will be considered in the Section 3.3. 
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The first term in bracket in Eq.(6) represents the self-energy of the electric field, the 

second term the electrostatic potential energy of charged particles, the third term the 

energy of solvent molecules interacting with the electric field. The third term is obtained, 

with the deduction detailed in Supporting information, from a canonical ensemble of 

solvent dipoles at the mean-field level. Eq.(6) is identical to the result derived from 

statistical field considerations at the mean field level, see Budkov.59-60 

𝑈𝑈nu[𝑟𝑟, {𝑛𝑛𝑖𝑖}] describes repulsive forces between nuclei in metal and solution phases, 

which is responsible for the structure integrity of the EDL by preventing the solution 

species from entering the metal skeleton, 

𝑈𝑈nu[𝑟𝑟, {𝑛𝑛𝑖𝑖}] = �𝑑𝑑𝑉𝑉�𝑛𝑛a𝑊𝑊a(𝑟𝑟) + 𝑛𝑛c𝑊𝑊c(𝑟𝑟) + 𝑛𝑛s𝑊𝑊s(𝑟𝑟)�, (7) 

and 𝑊𝑊𝑖𝑖(𝑟𝑟) are parameterizable, short-range, repulsive forces, which are given by a 

power law in the spirit of the Lennard-Jones potential, 

𝑊𝑊𝑖𝑖(𝑟𝑟) = 𝜔𝜔𝑖𝑖 �
𝜎𝜎𝑖𝑖1

(𝑥𝑥 − 𝑙𝑙M) ∙ ℎ(𝑥𝑥 − 𝑙𝑙M) + 𝜎𝜎𝑖𝑖2
�
6

, (8) 

where 𝜔𝜔𝑖𝑖 is positive and characterizes the force strength, 𝜎𝜎𝑖𝑖1 and 𝜎𝜎𝑖𝑖2 are two lengths 

characterizing the range of the interaction, x is the through-plane coordinate, 𝑙𝑙M is the 

thickness of the metal phase, and ℎ(𝑥𝑥) is the Heaviside function. 

𝑈𝑈ion({𝑛𝑛𝑖𝑖}) describes ion-specific interactions between metal electrons and the electrons 

of solution ions. It is assumed to be a bilinear functional of the metal electron density 𝑛𝑛𝑒𝑒 

and the ion densities 𝑛𝑛𝑎𝑎 and 𝑛𝑛𝑥𝑥 , 
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𝑈𝑈ion[{𝑛𝑛𝑖𝑖}] = �𝑑𝑑𝑉𝑉(𝑛𝑛a𝑉𝑉a + 𝑛𝑛c𝑉𝑉c)𝑛𝑛𝑒𝑒 , (9) 

where 𝑉𝑉a and 𝑉𝑉c characterize the repulsions between metal electrons and anions/cations, 

respectively. 

At this point, the four interaction energy terms in Eq.(3) have been obtained. Next, we 

will develop expressions for the entropy S. The total entropy S is composed of three 

contributions, 

𝑇𝑇 = 𝑇𝑇𝑒𝑒 + 𝑇𝑇𝑥𝑥 + 𝑇𝑇𝑜𝑜 , (10) 

where 𝑇𝑇𝑒𝑒 is the entropy of metal electrons, 𝑇𝑇𝑜𝑜 the orientational entropy of solvent 

molecules, and 𝑇𝑇𝑥𝑥 the configurational entropy of ions and solvent molecules in solution. 

The distribution of metal electrons is only slightly altered by potential, see Figure 5. 

Consequently, 𝑇𝑇𝑒𝑒 is nearly constant as 𝜙𝜙M changes. Furthermore, 𝑇𝑇𝑜𝑜 has been considered 

in the energy of solvent molecules in Eq. (6). Therefore, our focus is on 𝑇𝑇𝑥𝑥, which is 

calculated from the lattice-gas model, 

𝑇𝑇𝑥𝑥 = �𝑘𝑘𝐵𝐵 ln P. (11) 

Here, we divide the solution phase into volume units of 𝛿𝛿𝑉𝑉. The total entropy is the sum 

of that of all the volume units. The volume unit has 𝑛𝑛0𝛿𝛿𝑉𝑉 lattice cells, with 𝑛𝑛0 being the 

lattice cell density, which are occupied by 𝑛𝑛𝑥𝑥𝛿𝛿𝑉𝑉 cations, 𝑛𝑛𝑎𝑎𝛿𝛿𝑉𝑉 anions, 𝑛𝑛𝑠𝑠𝛿𝛿𝑉𝑉 solvent 

molecules, and 𝑛𝑛𝑣𝑣𝛿𝛿𝑉𝑉 vacant cells. P is the number of ways all particles in the volume unit 

could be arranged, calculated as 

P =
(𝑛𝑛0𝛿𝛿𝑉𝑉)!

(𝑛𝑛𝑥𝑥𝛿𝛿𝑉𝑉)! (𝑛𝑛𝑎𝑎𝛿𝛿𝑉𝑉)! (𝑛𝑛𝑠𝑠𝛿𝛿𝑉𝑉)! (𝑛𝑛𝑣𝑣𝛿𝛿𝑉𝑉)!
. (12) 
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Using the Stirling formula and taking the continuous limit (transforming the summation 

to a volume integration) yield, 

𝑇𝑇𝑥𝑥 = −�𝑑𝑑𝑉𝑉𝑘𝑘𝐵𝐵 �𝑛𝑛𝑥𝑥 ln
𝑛𝑛𝑥𝑥
𝑛𝑛0

+ 𝑛𝑛𝑎𝑎 ln
𝑛𝑛𝑎𝑎
𝑛𝑛0

+ 𝑛𝑛𝑠𝑠 ln
𝑛𝑛𝑠𝑠
𝑛𝑛0

+ 𝑛𝑛𝑣𝑣 ln
𝑛𝑛𝑣𝑣
𝑛𝑛0
�, (13) 

where 𝑛𝑛𝑣𝑣 = 𝑛𝑛0 − 𝑛𝑛𝑥𝑥 − 𝑛𝑛𝑎𝑎 − 𝑛𝑛𝑠𝑠 is the number density of vacancies. 

2.3 Controlling equations of electric potential and electron density 

Combined, the grand potential is written as a volume integration of a grand potential 

density over the EDL, 

Ω = �𝑑𝑑𝑉𝑉 𝑓𝑓[𝑛𝑛𝑖𝑖 ,𝛻𝛻𝑛𝑛𝑖𝑖 ,𝜙𝜙,𝐸𝐸], (14) 

with the volumetric density of the grand potential given by, 

𝑓𝑓 = 𝑡𝑡ni[𝑛𝑛e,∇𝑛𝑛e] + 𝑢𝑢xc[𝑛𝑛e,∇𝑛𝑛e]  + 𝑒𝑒0𝜙𝜙 � 𝑧𝑧i𝑛𝑛i
i=e,mc,a,c

−
1
2
𝜖𝜖∞𝐸𝐸2 

−
𝑛𝑛s
𝛽𝛽

ln �
sinh(𝛽𝛽𝑝𝑝𝐸𝐸)

𝛽𝛽𝑝𝑝𝐸𝐸
�+

1
𝛽𝛽

� 𝑛𝑛j ln
𝑛𝑛j
𝑛𝑛0j=a,c,s,v

 

+ � 𝑛𝑛m𝑊𝑊m
m=a,c,s

+ (𝑛𝑛𝑎𝑎𝑉𝑉𝑎𝑎 + 𝑛𝑛𝑥𝑥𝑉𝑉𝑥𝑥)𝑛𝑛𝑒𝑒 − � 𝜇𝜇�q𝑛𝑛q
q=e,a,c,s,v

, 

(15) 

where 𝑡𝑡ni and 𝑢𝑢xc are the volumetric densities of 𝑇𝑇ni and 𝑈𝑈xc, respectively. It can be seen 

that 𝑓𝑓 is a functional of number densities, {𝑛𝑛𝑖𝑖}, and electric potential, 𝜙𝜙, and it is termed 

therefore a hybrid density-potential functional. By means of the variational procedure, 

we obtain Euler-Lagrange equations in terms of {𝑛𝑛𝑖𝑖} and 𝜙𝜙, 

𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

− ∇�
𝜕𝜕𝑓𝑓

𝜕𝜕(∇𝜕𝜕)� = 0, (16) 
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where 𝜕𝜕 = 𝜙𝜙,𝑛𝑛e,𝑛𝑛a,𝑛𝑛c,𝑛𝑛s. 

Substituting Eq.(15) into Eq.(16) with 𝜕𝜕 = 𝜙𝜙 yields, 

−∇ ∙ [𝜖𝜖eff(𝑛𝑛s,𝐸𝐸)𝐸𝐸] = 𝑒𝑒0 � 𝑧𝑧i𝑛𝑛i
i=e,mc,a,c

, (17) 

where 𝜖𝜖eff(𝑛𝑛sv,𝐸𝐸) is an effective dielectric permittivity, 

𝜖𝜖eff(𝑛𝑛s,𝐸𝐸) = 𝜖𝜖∞ +
𝑛𝑛s𝑝𝑝
𝐸𝐸

�coth(𝛽𝛽𝑝𝑝𝐸𝐸) −
1

𝛽𝛽𝑝𝑝𝐸𝐸
�, (18) 

which asymptotically approaches 𝜖𝜖∞ in a strong electric field (|𝛽𝛽𝑝𝑝𝐸𝐸| ≫ 1) and 𝜖𝜖∞ + 𝑛𝑛s𝛽𝛽𝑝𝑝2

3
 

in a weak electric field (|𝛽𝛽𝑝𝑝𝐸𝐸| ≪ 1). 

Substituting Eq.(15) into Eq.(16) with 𝜕𝜕 = 𝑛𝑛e yields 

∇ �
𝜕𝜕(𝑡𝑡ni + 𝑢𝑢xc)

𝜕𝜕∇𝑛𝑛e
� =

𝜕𝜕(𝑡𝑡ni + 𝑢𝑢xc)
𝜕𝜕𝑛𝑛e

+ (𝑛𝑛𝑎𝑎𝑉𝑉𝑎𝑎 + 𝑛𝑛𝑥𝑥𝑉𝑉𝑥𝑥) − 𝑒𝑒0𝜙𝜙 − 𝜇𝜇�e, (19) 

where 𝜇𝜇�e is the electrochemical potential of metal electrons. 

For the expressions of 𝑡𝑡ni and 𝑢𝑢xc used in this theory, we have 

𝜕𝜕(𝑡𝑡ni + 𝑢𝑢xc)
𝜕𝜕𝛻𝛻𝑛𝑛e

= 2𝜉𝜉𝑎𝑎02𝑐𝑐2
𝛻𝛻𝑛𝑛e
𝑛𝑛e

, (20) 

𝜕𝜕(𝑡𝑡ni + 𝑢𝑢xc)
𝜕𝜕𝑛𝑛e

= 𝜉𝜉𝑎𝑎02 �
5
3
𝑐𝑐1𝑛𝑛e

2
3 − 𝑐𝑐2

(𝛻𝛻𝑛𝑛e)2

(𝑛𝑛e)2 �+ 𝜉𝜉𝑎𝑎0

⎝

⎜
⎛4

3
𝑐𝑐3𝑛𝑛e

1
3 + 𝑐𝑐4

𝑛𝑛e
1
3 �4

3 𝑐𝑐5 + 𝑎𝑎0𝑛𝑛e
1
3�

�𝑐𝑐5 + 𝑎𝑎0𝑛𝑛e
1
3�

2

⎠

⎟
⎞

. (21) 

Substituting Eq.(15) into Eq.(16) with 𝜕𝜕 = 𝑛𝑛a,𝑛𝑛c,𝑛𝑛s gives 
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𝑧𝑧a𝑒𝑒0𝜙𝜙 +
1
𝛽𝛽

ln
𝑛𝑛a

𝑛𝑛0 − 𝑛𝑛a − 𝑛𝑛c − 𝑛𝑛s
+ 𝑊𝑊a + 𝑉𝑉a𝑛𝑛e − 𝜇𝜇�a = 0, 

𝑧𝑧c𝑒𝑒0𝜙𝜙 +
1
𝛽𝛽

ln
𝑛𝑛c

𝑛𝑛0 − 𝑛𝑛a − 𝑛𝑛c − 𝑛𝑛s
+ 𝑊𝑊c + 𝑉𝑉c𝑛𝑛e − 𝜇𝜇�c = 0, 

−
1
𝛽𝛽

ln �
sinh(𝛽𝛽𝑝𝑝𝐸𝐸)

𝛽𝛽𝑝𝑝𝐸𝐸
� +

1
𝛽𝛽

ln
𝑛𝑛s

𝑛𝑛0 − 𝑛𝑛a − 𝑛𝑛c − 𝑛𝑛s
+ 𝑊𝑊s − 𝜇𝜇�𝑠𝑠 = 0, 

(22) 

which leads to 

𝑛𝑛c,a,s = 𝑛𝑛0
𝜒𝜒c,a,s𝛩𝛩c,a,s

𝜒𝜒v + 𝛩𝛩a𝜒𝜒a + 𝛩𝛩c𝜒𝜒c + 𝛩𝛩s𝜒𝜒s
, (23) 

with 𝜒𝜒c,a,s,v being the fractions of cations, anions, solvent molecules, and vacancies in the 

solution bulk, and 𝛩𝛩c,a,s being spatially dependent Boltzmann factors 

𝛩𝛩c,a = exp�−𝑧𝑧c,a𝑒𝑒0𝛽𝛽𝜙𝜙 − 𝛽𝛽𝑊𝑊c,a − 𝛽𝛽𝑉𝑉c,a𝑛𝑛e�, 

𝛩𝛩s = exp �ln �
sinh(𝛽𝛽𝑝𝑝𝐸𝐸)

𝛽𝛽𝑝𝑝𝐸𝐸
� − 𝛽𝛽𝑊𝑊s�. 

(24) 

The fact that particles have varying sizes can be considered by modifying Eq.(23) to 

𝑛𝑛c,a,s = 𝑛𝑛0
𝜒𝜒c,a,s𝛩𝛩c,a,s

𝜒𝜒v + 𝛾𝛾a𝛩𝛩a𝜒𝜒a + 𝛾𝛾c𝛩𝛩c𝜒𝜒c + 𝛩𝛩s𝜒𝜒s
, (25) 

where the sizes of solvent molecules and vacancies are assumed to be equal and taken 

as the reference size, 𝛾𝛾a and 𝛾𝛾c denote the relative sizes of solvated anions and cations, 

respectively, which are calculated as 

𝛾𝛾a,c = �
𝑑𝑑a,c

𝑑𝑑s
�
3

, (26) 
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with 𝑑𝑑a,c being the effective diameters of anions and cations, and 𝑑𝑑s the diameter of 

solvent molecules. We have 𝑑𝑑c = 2𝑟𝑟c + 2𝑑𝑑s for cations assuming a spherical solvation 

shell consisting of a single layer of solvent molecules, where 𝑟𝑟a is the radius of bare 

cations. Since the anion-solvent interactions are much weaker than cation-solvent 

interactions,61-63 we do not designate a fixed solvation shell for anions; instead, we use 

𝑑𝑑c = 2𝑟𝑟a with 𝑟𝑟a representing the radius of bare anions. A more rigorous treatment of 

the size effect has been presented by Zhang and Huang,64 resulting in transcendental 

equations that cannot be solved analytically. The present consideration in Eq.(25) is 

simple, intuitive, and gives correct asymptotic behavior. When 𝛩𝛩a,c → ∞, namely, when 

anions or cations dominate in the solution phase, Eq.(25) is asymptotic to 𝑛𝑛a,c = 𝑛𝑛0
𝛾𝛾a,c

. 

Substituting density expressions given in Eq.(25) into Eq.(17) results in a second-order 

ordinary differential equation (ODE) in 𝜙𝜙. Combined, Eqs.(17) and (19) constitute a 

closed set of controlling equations to solve for the density and electric potential 

distributions in the EDL. The presented formalism eliminates the need of trial functions 

for the electron density profile, which was the standard procedure in the vast majority of 

previous studies employing a jellium model to describe metal electronic effects in the 

EDL.17-18, 26, 29 Uncertainties introduced in trial functions are thus eliminated. 

2.4 Boundary conditions 

Eqs.(17) and (19) are closed with boundary conditions (BCs) as follows. The BCs on the 

solution side at far distance from the EDL are, 

𝜙𝜙 = 0, 𝑛𝑛e = 0, (27) 

where the first identity corresponds to the use of the electric potential in the solution 

bulk as the potential reference, and the second identity reflects the fact that metal 

electrons are absent in the solution bulk. 
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The BCs on the metal side far away from the EDL are dependent on how the metal 

cationic cores are considered. In the simplest case, metal cationic cores are treated as a 

uniform background of positive charge density 𝑛𝑛mc, then the BCs on the metal side 

follow, 

𝜙𝜙 = 𝜙𝜙M, 𝑛𝑛e = 𝑛𝑛mc. (28) 

In Eq.(28), the metal electric potential is explicitly given in the BC. Consequently, 

constant-potential modulation of the EDL is apparently achieved. 

For the case where the size and arrangement of metal cationic cores are explicitly 

considered, we can take the metal-side boundary at the central plane of metal cationic 

cores. Consequently, symmetrical BCs apply, 

∇𝜙𝜙 = 0, ∇𝑛𝑛e = 0. (29) 

For this case, the metal electric potential plays its role by affecting 𝜇𝜇�e in Eq. (19), which is 

calculated as, 

𝜇𝜇�e = 𝜇𝜇e − 𝑒𝑒𝜙𝜙M, (30) 

where 𝜇𝜇e is the chemical potential of metal electrons, which is calculated from Eq.(19). 

2.5 Nondimensionalization, numerical implementation, and parameters 

We define dimensionless variables, marked with an over-bar, as follows, 

𝑛𝑛�𝑖𝑖 = 𝑛𝑛𝑖𝑖(𝑎𝑎0)3, �̅�𝑥 =
𝑥𝑥
𝑎𝑎0

,𝜙𝜙� =
𝑒𝑒0
𝑘𝑘𝐵𝐵𝑇𝑇

𝜙𝜙, �̅�𝑝 =
𝑝𝑝
𝑒𝑒0𝑎𝑎

, (31) 

which refer to the normalized number density, length, electric potential, and dipole 

moment, respectively. The modified Poisson-Boltzmann equation in Eq.(17) is rewritten 

in dimensionless variables as, 
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−∇(𝜖𝜖∞̅∇𝜙𝜙� + 𝑛𝑛�s�̅�𝑝𝜅𝜅ℒ) = 𝜅𝜅 � � 𝑧𝑧i𝑛𝑛�𝑖𝑖
i=e,mc,a,c

�, (32) 

where 𝜅𝜅 = 𝑒𝑒02

𝑘𝑘𝐵𝐵𝑇𝑇𝜖𝜖0𝑎𝑎0
 is a number derived from fundamental constants, and ℒ = coth(�̅�𝑝𝐸𝐸�) −

1
�̅�𝑝𝐸𝐸�

. 

The dimensionless form of Eq.(19) for the metal electron density reads, 

∇2𝑛𝑛�e =
1

2𝑛𝑛�e
(∇𝑛𝑛�e)2 +

𝑛𝑛�e
2𝑐𝑐2

��̅�𝜇e(𝑛𝑛�e) − �̅�𝜇e(𝑛𝑛�e0)�

−
2𝜋𝜋
𝜅𝜅𝑐𝑐2

𝑛𝑛�e(𝜙𝜙� − 𝜙𝜙�M − 𝑉𝑉�a𝑛𝑛�a − 𝑉𝑉�c𝑛𝑛�c), 
(33) 

where �̅�𝜇e is the dimensionless chemical potential of metal electrons. For a homogeneous 

electron gas described by the TFDW theory, �̅�𝜇e(𝑛𝑛�e) is calculated as, 

�̅�𝜇e(𝑛𝑛�e) =
5
3
𝑐𝑐1(𝑛𝑛�e)

2
3 + (𝑛𝑛�e)

1
3

⎝

⎛4
3
𝑐𝑐3 + 𝑐𝑐4

4
3 𝑐𝑐5 + (𝑛𝑛�e)

1
3

�𝑐𝑐5 + (𝑛𝑛�e)
1
3�

2

⎠

⎞ (34) 

Eqs. (32) and (33) constitute the dimensionless controlling equations of the present 

theory. Technical details on numerical implementation using the ‘bvp4c’ solver in 

Matlab65 are provided in Supporting Information. 

In a previous work, we have studied the case where the metal is treated as a jellium with 

a uniform charge background.50 In this work, we consider a one-dimensional, discrete, 

periodic arrangement of metal cationic cores, as depicted in Figure 3, which represents a 

step closer to the real situation. The charge distribution of metal cationic cores is written 

as, 
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𝑛𝑛�mc(𝑥𝑥)
𝑛𝑛�mc0

= ℎ(𝑥𝑥) − ℎ �𝑥𝑥 −
𝑎𝑎mc

2
� + ℎ �𝑥𝑥 −

𝑎𝑎mc
2

− 𝑡𝑡� − ℎ �𝑥𝑥 −
3𝑎𝑎mc

2
− 𝑡𝑡� 

+ℎ �𝑥𝑥 −
3𝑎𝑎mc

2
− 2𝑡𝑡� − ℎ �𝑥𝑥 −

5𝑎𝑎mc
2

− 2𝑡𝑡� + ℎ �𝑥𝑥 −
5𝑎𝑎mc

2
− 3𝑡𝑡� 

−ℎ �𝑥𝑥 −
7𝑎𝑎mc

2
− 3𝑡𝑡� + ℎ �𝑥𝑥 −

7𝑎𝑎mc
2

− 4𝑡𝑡� − ℎ �𝑥𝑥 −
9𝑎𝑎mc

2
− 4𝑡𝑡� 

(35) 

where ℎ(𝑥𝑥) = 1 if 𝑥𝑥 > 0 and ℎ(𝑥𝑥) = 0 elsewhere. 𝑎𝑎mc is the diameter of metal cationic 

cores, 𝑡𝑡 the gap between two metal cationic cores, 𝑛𝑛�mc0  the normalized charge density of 

metal cationic cores. A symmetric boundary is applied at 𝑥𝑥 = 0, where the BCs expressed 

in Eq.(29) are applied. 

 

Figure 3. Schematic illustration of the distributions of (a) metal cationic cores and (b) 

metal cationic charge profile. 𝑎𝑎mc is the diameter of metal cationic cores, 𝑡𝑡 the gap 

between two metal cationic cores, 𝑛𝑛�mc0  the normalized charge density of metal cationic 

cores. The thickness of the metal phase is 𝑙𝑙M = 4.5(𝑎𝑎mc + 𝑡𝑡). Though a 2D schematic 
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illustration is shown in (a), the model is solved in a one-dimensional geometry where the 

one-dimensional metal cationic charge profile is shown in (b). 

Model parameters for the base case without electrosorption, corresponding to Ag(111) 

in 0.1 M KPF6, are summarized in Table 1, which are categorized into types of ‘general 

constants’, ‘solution’, ‘metal’, and ‘metal-solution interaction’. The solution parameters 

correspond to 0.1 M KPF6 aqueous solution. The lattice size is taken as that of water 

molecules. Normalized number densities of cations and anions in the bulk solution are 

given by, 𝑛𝑛�a = 𝑛𝑛�c = 𝑐𝑐b𝑁𝑁A(𝑎𝑎0)3, and their bulk fractions are calculated as, 𝜒𝜒a = 𝜒𝜒c =

𝑐𝑐b𝑁𝑁A(𝑑𝑑s)3. In a continuum description of the EDL, all particles shall have number 

densities everywhere. Consequently, a fraction of unoccupied lattice cells, 𝛾𝛾v = 0.05, is 

introduced in the solution bulk, and 𝛾𝛾v grows to nearly unity in the metal-solution gap. 

As for water molecules, its bulk number density is 55.6M, its bulk dielectric constant is 

78.5, and its effective dipole moment, 𝑝𝑝, is determined as 4.84D. 

As for the metal, its properties are defined by four parameters, two structural 

parameters, 𝑎𝑎mc and 𝑡𝑡, the normalized charge density of metal cationic cores 𝑛𝑛�mc0 , and 

the optical dielectric constant 𝜖𝜖∞̅M. Their values in Table 1 correspond to Ag(111), which 

are parameterized using DFT calculations in the Supporting Information. The optical 

dielectric constant shall be continuous from the metal bulk to the solution bulk, because 

a discontinuity of the dielectric constant will result in an induced surface charge density 

on the metal surface, so-called image charge effects. 

Parameters in Eq.(8) describing the metal-solution interactions determine the thickness 

of the metal-solution gap, 𝑡𝑡msg, which is obtained readily from ab initio molecular 

dynamics (AIMD) simulations, see ref.35, 37. 𝑡𝑡msg is the primary parameter determining the 

Helmholtz capacitance, which can be obtained using electrochemical impedance 
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measurements. The values listed in Table 1 result in 𝑡𝑡msg ≈ 2 Å, which is close to AIMD 

results.35, 37 In the base case, we assume 𝑉𝑉�i (i = c, a) = 0. 

Table 1 Model parameters for the base case 

Category Symbol Item Value 
General 
constants 

𝑅𝑅 Ideal gas constant 8.314 JK−1mol−1 
𝑘𝑘B Boltzmann constant 1.38 ∙ 10−23 J/K 

T Temperature 298.15 K 
𝑒𝑒 Elementary charge 1.6 × 10−19C 
𝑁𝑁A Avogadro’s number 6.02 × 1023/mol  
𝜖𝜖0 Vacuum permittivity 8.85 × 10−11F/m 
𝑎𝑎0 Bohr radius 5.29 × 10−11 m 
𝑛𝑛ref Reference number density (𝑎𝑎0)−3 
𝜅𝜅 Dimensionless constant 𝑒𝑒02/(𝑘𝑘𝐵𝐵𝑇𝑇𝜖𝜖0𝑎𝑎0) 

Solution 𝑐𝑐b Bulk ion concentration 0.1 M 
𝜖𝜖∞̅S  Optical dielectric constant of 

solution 
2 

𝑟𝑟c Cation radius 1.38 Å 
𝑟𝑟a Anion radius 3 Å 
𝛾𝛾c Relative size of solvated cations (2𝑟𝑟c + 2𝑑𝑑s)3/(𝑑𝑑s)3 
𝛾𝛾a Relative size of solvated anions (2𝑟𝑟a)3/(𝑑𝑑s)3 
𝑧𝑧a Charge number of anions -1 
𝑧𝑧c Charge number of cations 1 
𝑛𝑛�s Solvent number density 5.56 × 104𝑁𝑁𝐴𝐴(𝑎𝑎0)3 

𝜒𝜒v Volume fraction of vacuum in 
solution bulk 

0.05  

𝑑𝑑s Water diameter 2.75 Å 
𝑝𝑝s Water dipole moment 4.74 D 

Metal 𝑛𝑛�mc0  Dimensionless metal electron 
density 

0.2042 

𝑎𝑎mc Diameter of metal cationic cores 1.10 Å 
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𝑡𝑡 Gap between two metal cationic 
cores 

1.25 Å 

𝜖𝜖∞̅M Optical dielectric constant of 
metal 

2 

Metal-
solution 
interaction 

𝜔𝜔i 
(i=s,c,a) 

Force constant of metal-
solvent/cation/anion repulsion 

10 𝑘𝑘B𝑇𝑇 

𝑉𝑉�i (i=c,a) Dimensionless force constant 
between metal electrons and 
anions/cations 

0 

𝜎𝜎i1 
(i=s,c,a) 

Characteristic length of metal-
solvent/cation/anion repulsion 

2 Å 

𝜎𝜎i2 
(i=s,c,a) 

Characteristic length of metal-
solvent/cation/anion repulsion 

0.4 Å 

 

3 Results and Discussion 

3.1 Distributions of electric potential, dielectric constant, and number densities 

The model is employed to describe the EDL for the base case without electrosorption, 

using parameters given in Table 1 corresponding to a Ag(111) in 0.1 M KPF6. The model 

is solved for a one-dimensional geometry for a series of metal electric potential (𝑈𝑈M 

ranges from 1230 to 1170 with a step of 1)①, and the resulting distributions of the 

electric potential, the number densities of particles (electron, anion, cation, solvent), and 

the dielectric constant are shown in Figure 5 and Figure 6. Due to the discreteness of 

metal cationic cores, the electric potential and electron density oscillate in the metal 

phase. The electron density extends beyond the metal skeleton (𝑥𝑥 = 𝑙𝑙M), and spreads 

into the solution compartment, which is termed ‘electron spillover’. The electron 

                                                           
① This potential range is used because the metal surface charge transitions 
from positive to negative values as the metal electric potential decreases in this 
range, namely, the potential of zero charge lies in this potential range. For 
different metals with different values of 𝑛𝑛�mc0 , different potential ranges should 
be used. 
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spillover extends over ~2 Å, and is modulated slightly by 𝜙𝜙M. Specifically, decreasing 𝜙𝜙M, 

namely, elevating the electrochemical potential of metal electrons, pushes metal 

electrons further into the solution compartment. 

Though the change in the electron density is slight, the electric potential distribution in 

the solution compartment shows a strong dependence on 𝜙𝜙M, as observed in Figure 4 

(c) and (d), with variations on the order of 1.0 V. In general, the electric potential 

changes drastically in the near-metal region, i.e. for 1 < 𝑥𝑥 < 1.2 nm, followed by a 

gradual change in the diffuse layer that extends over several nanometers and then 

approaching zero in the solution bulk. The sign of the electric potential changes as a 

function of 𝜙𝜙M, which implies that the excess free charge on the metal surface changes 

its sign as a function of 𝜙𝜙M. 
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Figure 4. (a) Electron density and (c) electric potential distributions across the metal-

solution interface at a series of metal electric potentials. With the potential of zero 

charge (pzc) as the reference, the metal electric potential varies from -0.604 V 

(UM=1170) to 0.939 V (UM=1230) (every 10𝑘𝑘𝐵𝐵𝑇𝑇/𝑒𝑒0 = 0.257 V). (b) is an enlarged view of 

(a) in the solution region. (d) is an enlarged view of (c) in the solution region. 

Cations (anions) are attracted by columbic interactions to the diffuse layer when the 

electric potential is locally negative (positive). Consequently, anions are accumulated in 
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the diffuse layer when 𝜙𝜙M is high, while depleted when 𝜙𝜙M gets lower, as shown in 

Figure 5 (a). The opposite trend applies for cations. The ion size effect results in a 

plateau in the cation density profile, signifying saturation of the cation density, in the 

diffuse layer, e.g. see the curve of 𝜙𝜙M = −0.604 V vs. the potential of zero charge (pzc). 

The ion saturation phenomenon in the diffuse layer can be readily appreciated from 

Eq.(25). The maximum cation density is, 𝑛𝑛c,a
max = 𝑛𝑛0/𝛾𝛾c,a, which is obtained when 𝛩𝛩c,a 

dominates in the denominator of Eq.(25). 

Due to volume exclusion of counterions, the number density of solvent molecules 

generally decreases in the diffuse layer, see Figure 5 (c). Of note, small humps in the 

number density of solvent molecules are found near the metal surface because solvent 

molecules can more effectively screen the electric field than counterions. The decreased 

number density of solvent molecules and the polarization saturation induced by the 

high local electric field together result in a sharp decrease of the dielectric constant in 

the diffuse layer. In several DFT studies using an implicit treatment of the solvent, the 

permittivity decrease in the interfacial region is described using the Fattebert-Gygi 

relation, which is an empirical relation expressing the permittivity as a function of the 

metal electron density.66-68 Aside from the uncertainties in the empirical coefficients,69 

the primary deficiency of the Fattebert-Gygi relation is the lack of physical significance. 

Consequently, it cannot capture the humps as seen in Figure 5 (c). 

All particle number densities in Figure 5 drop to zero at ~2 Å away from the metal 

surface due to the short-range repulsive forces in Eq.(8). Consequently, a nearly-vacuum 

gap between the metal surface and the solution phase is formed. The gap width 

develops, in a consistent manner, as a function of 𝜙𝜙M (or the metal surface charge 

density 𝜎𝜎M). As the particle number densities vary continuously, we cannot define an 

exact location of the plane corresponding to the closest approach of particles. In 

general, the ‘closest’ approach of anions shifts further away from the metal surface, as 
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𝜙𝜙M decreases, while the opposite applies for cations, see the insets of Figure 5 (a) and 

(b). It has been shown that the width of the metal-solution gap is crucial to the surface 

charging relation and the double-layer capacitance of the EDL.20, 24, 50, 70 Some previous 

works assumed a constant value for the vacuum-gap width,16-18 while other works tried 

to determine the vacuum-gap width by minimizing the grand potential20, 50, 70 or by 

using a force balance equation.24 Compared to these previous treatments, our approach 

is simpler because it removes the need of calculating the model at a series of the gap 

width or an additional controlling equation of the force balance. Moreover, it is more 

general because, with appropriate parameterization of the force relations using DFT 

calculations, Eq.(8) may well describe a wide array of EDLs. 
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Figure 5. (a) Anion density, (b) cation density, (c) solvent density, and (d) dielectric 

constant across the EDL as a series of metal electric potentials 𝜙𝜙M. The insets in (a) (b) 

and (d) present an enlarged view near the metal surface. With the potential of zero 

charge as the reference, the metal electric potential varies from -0.604 V (UM=1170) to 

0.939 V (UM=1230) (every 10𝑘𝑘𝐵𝐵𝑇𝑇/𝑒𝑒0 = 0.257 V). 

 

3.2 Surface charging relation and double layer capacitance 
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The excess free charge density of the EDL is defined as,50 

𝜎𝜎M = � �𝑛𝑛�mc(𝑥𝑥) − 𝑛𝑛�e(𝑥𝑥)�(𝑎𝑎0)−3𝑒𝑒0𝑑𝑑𝑥𝑥
∞

−∞
, (36) 

where (𝑎𝑎0)−3 is the reference number density. As the whole EDL is electroneutral, 𝜎𝜎M is 

the negative of the net charge stored in the double layer, 

𝜎𝜎M = −� �𝑧𝑧𝑥𝑥𝑛𝑛�c(𝑥𝑥) + 𝑧𝑧𝑎𝑎𝑛𝑛�a(𝑥𝑥)�(𝑎𝑎0)−3𝑒𝑒0𝑑𝑑𝑥𝑥
∞

−∞
. (37) 

Figure 6 (a) shows 𝜎𝜎M as a function of 𝜙𝜙M for two electrolyte concentrations. 𝜎𝜎M increases 

monotonically from negative to positive values as 𝜙𝜙M increases. The electric potential at 

which 𝜎𝜎M = 0 is termed the potential of zero charge (pzc). Of note, the so-called pzc 

obtained from DFT-based first-principles models is actually calculated from the electronic 

work function of an uncharged metal-solution interface.31, 33-35 In contrast, the present 

model is able to determine the pzc directly from the 𝜎𝜎M vs.  𝜙𝜙M curve. 

The differential double-layer capacitance is calculated using, 

𝐶𝐶dl = 𝜕𝜕𝜎𝜎M 𝜕𝜕𝜙𝜙M⁄  (38) 

which is, as shown in Figure 6 (b), a two-humped camel-shaped function of 𝜙𝜙M. The valley 

is called Gouy-Chapman minimum, a classical concept in electrochemistry.1  

The two peaks in the 𝐶𝐶dl vs.  𝜙𝜙M curve signify the crowding of counterions in the diffuse 

layer when 𝜙𝜙M deviates substantially from the pzc, namely, when the EDL is highly 

electrified. The locations of the two peaks depend on the ion size and the electrolyte 

concentration. The asymmetry in the height of two peaks reflects different sizes of 

counterions. The smaller the counterions, the higher the peak, due to the fact that 

counterions can be packed more densely and at a closer distance from the interface in 

the EDL. It is worth noting that the 𝐶𝐶dl vs. 𝜙𝜙M curve is still asymmetrical for the equal-

sized case, which is attributed to metal electrons entering into the solution 
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compartment – an asymmetric effect, as revealed previously.50 Herein, the anions (PF6−) 

have a smaller size than the hydrated cations (K+). Consequently, the anionic peak found 

at more positive 𝜙𝜙M has a slightly higher magnitude than the cationic peak found at 

more negative 𝜙𝜙M. The anionic peak is diminished to certain extent by the metal 

electronic effects. 

  

Figure 6. Model calculated (a) surface charging and (b) double layer capacitance of the 

EDL as a function of the metal electric potential for the Ag(111)-KPF6 system. Two 

electrolyte concentrations (100 mM, 10 mM) are compared. The potential of zero charge 

is used as the potential reference. (c) Experimental capacitance curves measured by 

Valette on a Ag(111) electrode in 10 and 100 mM KPF6 aqueous solution at room 

temperature. The electrode potential is referenced to the silver chloride electrode 

(SCE).71 

Two electrolyte concentrations are compared in Figure 6 (b). It is found that the two 

peaks in the 𝐶𝐶dl vs.  𝜙𝜙M curve are diminished and the distance between them decreases 

at higher concentration, which is a well-known feature of the Gouy-Chapman theory.7, 11 

It is expected that the two peaks will eventually merge into a single peak as the 
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electrolyte concentration increases further. Under such circumstances, the two-humped 

camel-shaped curve transforms into a bell-shaped curve.11 Experimental data measured 

by Valette for the Ag(111)-KPF6 system at these two electrolyte concentrations are 

shown in Figure 6 (c). The experimental 𝐶𝐶dl vs.  𝜙𝜙M curves were measured at a fixed 

frequency in the range between 20 and 320 Hz. The variation in the 𝐶𝐶dl was found to be 

less than 5% in this frequency range, namely the frequency dispersion phenomenon is 

trivial. Valette demonstrated that the specific adsorption of PF6− is slight on Ag(111). 

Therefore, the contribution of the pseudo-capacitance of specific adsorption is small in 

the experiments. A reasonable agreement between the model and the experiment has 

been obtained, in terms of both the magnitude and the trend of the 𝐶𝐶dl vs.  𝜙𝜙M curve, 

lending credence to the assumptions and parameters of the model. 

3.3 Specific adsorption 

Strong short-ranged electronic interactions may exist between metal surface and ions in 

solution, resulting in specific adsorption of ions (also termed chemisorption or 

electrosorption in the literature72). As is known, electronic interactions broaden the 

electronic orbital of ions, causing partial electron transfer between the metal and ions 

and, consequently, resulting in partial charges on ions.73-74 In such circumstances, the 

charge numbers 𝑧𝑧𝑖𝑖 in Eq.(6) are fractional and position- and potential dependent. The 

Schmickler-Kornyshev theory of electrosorption,74-75 which is based on the Anderson-

Newns theory of chemisorption,57, 76 provides a formula for 𝑧𝑧𝑖𝑖(𝑟𝑟), 

𝑧𝑧𝑖𝑖 = ±
1
2

+
1
𝜋𝜋

arctan �
Δ𝐻𝐻𝑖𝑖
Δ
�, (39) 

where Δ𝐻𝐻𝑖𝑖 is the energy of the ion’s highest occupied (for anions)/lowest unoccupied 

(for cations) molecular orbital relative to the Fermi level of the metal. Δ characterizes the 

strength of electronic interactions between metal surface and electrolyte ions. The 
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positive sign in front of 1/2 applies for cations and the negative sign for anions. A 

detailed derivation of Eq.(39) is provided in Supporting Information. 

The strength of electronic interactions increases with decreasing distance of the ion to 

the metal surface. DFT calculations suggest an exponential relation,77-78 

Δ = Δ0exp�−𝛽𝛽1(𝑥𝑥 − 𝑙𝑙M)ℎ(𝑥𝑥 − 𝑙𝑙M)� (40) 

where Δ0 is the value at 𝑥𝑥 = 𝑙𝑙M, and 𝛽𝛽1 an inverse length typically on the order of 1 Å−1; 

ℎ(𝑥𝑥) is the Heaviside function. 

As the metal electric potential increases, the Fermi level decrease by e0𝜙𝜙M, hence, Δ𝐻𝐻𝑖𝑖 

increases by e0𝜙𝜙M. Of note, Δ𝐻𝐻𝑖𝑖 also depends on the location of the ion. As a first 

approximation, we assume that near the metal surface Δ𝐻𝐻𝑖𝑖 varies linearly as a function 

of 𝑥𝑥, with a coefficient 𝛽𝛽2, thus giving 

Δ𝐻𝐻𝑖𝑖 = Δ𝐻𝐻𝑖𝑖,ref + e0(𝜙𝜙M − 𝜙𝜙ref) + 𝛽𝛽2(𝑥𝑥 − 𝑙𝑙M)ℎ(𝑥𝑥 − 𝑙𝑙M), (41) 

where Δ𝐻𝐻i,ref is the reference value at a given metal electric potential, 𝜙𝜙ref. In Eq.(41), 

Δ𝐻𝐻𝑖𝑖 will have very negative values when 𝑥𝑥 keeps increasing, implying that 𝑧𝑧a approaches 

-1 because Δ decreases exponentially. 

Figure 7 shows results for the case of halogen ion electrosorption at Ag(111) with the 

following parameters: Δ𝐻𝐻i,ref = −10 𝑘𝑘𝐵𝐵𝑇𝑇, 𝜙𝜙ref = 1200 kBT/e0, Δ0 = 20 𝑘𝑘𝐵𝐵𝑇𝑇, 𝛽𝛽1 =

1 Å−1,𝛽𝛽2 = −2 nm−1. The anion loses its negative charge to a greater extent near the 

metal surface and with increasing 𝜙𝜙M, as described by Eq.(39) and shown in Figure 7 (a). 

The nonmonotonic spatial dependence of 𝑧𝑧𝑎𝑎 results from the combination of an 

exponentially decaying Δ0 and a linearly decreasing Δ𝐻𝐻𝑖𝑖. 
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Partially charged anions are less effective in screening the positive free charge on the 

metal surface. Under such circumstance, solvent molecules will replace anions, resulting 

in an anomalous hump near the metal surface, as shown in Figure 7 (b). This 

phenomenon is termed surface depolarization of specifically adsorbing ions, which is 

expected to be general in the presence of ion specific adsorption. 

The 𝐶𝐶dl vs.  𝜙𝜙M curves of Ag(111) in 100 mM KCl (blue) and KI (red) are shown in Figure 7 

(c). The potential of zero charge in the KCl solution, denoted pzcCl, is used as the 

potential reference. It is known that the specific adsorption of I− is much stronger than 

that of Cl−.79 A stronger specific adsorption effectively brings the solution phase closer 

to the metal surface, as represented by smaller values of 𝜎𝜎𝑖𝑖1 and 𝜎𝜎𝑖𝑖2 in Eq.(8). Therefore, 

electronic interactions are intensified and Δ is larger, according to Eq.(40). In Figure 7 (c), 

we use 𝜎𝜎𝑖𝑖1 = 2 Å for Cl− and 𝜎𝜎𝑖𝑖1 = 1 Å for I−. The relation 𝜎𝜎𝑖𝑖2 = 𝜎𝜎𝑖𝑖1/5 is retained in both 

cases, so 𝜎𝜎𝑖𝑖2 is decreased proportionally. 

The 𝐶𝐶dl vs. 𝜙𝜙M curves change dramatically for the two halogen anions. Specifically, the 

𝐶𝐶dl vs. 𝜙𝜙M curve of I− is shifted to the left and elevated significantly. Both features are 

observed in the experimental data measured by Valette, Hamelin and Parsons.79 The pzc 

decreases by a magnitude of 0.4 V for I− compared to Cl−. This pzc shift reminds us that 

the pzc is co-determined by the electrode and the contacting electrolyte solution. 

Therefore, whenever discussing the pzc, one should specify the electrode and the 

contacting electrolyte solution on an equal footing. Both the pzc shift and the 𝐶𝐶dl 

growth are ascribed to smaller values of 𝜎𝜎𝑖𝑖1 and 𝜎𝜎𝑖𝑖2 for the case with stronger ion specific 

adsorption. The Helmholtz capacitance is greater for a narrower metal-solution gap, 

resulting in the 𝐶𝐶dl increase observed in Figure 7 (b). As a direct consequence of the 

larger 𝐶𝐶dl, the pzc is obtained at a lower potential as 𝜙𝜙M increases from low to high 

values. 
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Figure 7. The EDL at Ag(111) in 100 mM KX (X=Cl and I) is calculated. The potential of 

zero charge in KCl, denoted pzcCl, is used as the potential reference. The partial charge 

transfer is modelled using Δ𝐻𝐻i,ref = −10 𝑘𝑘𝐵𝐵𝑇𝑇, 𝜙𝜙ref = 1200kBT/e0, Δ0 = 20 𝑘𝑘𝐵𝐵𝑇𝑇, and 𝛽𝛽1 =

1 Å−1,𝛽𝛽2 = −2 nm−1. Other parameters for the case of Cl− are listed in Table 1. The 

stronger specific adsorption of I− leads to a narrow metal-solution gap, which is 

modelled using 𝜎𝜎𝑖𝑖1 = 1 Å (c.f. 𝜎𝜎𝑖𝑖1 = 2 Å for Cl−). The relation 𝜎𝜎𝑖𝑖2 = 𝜎𝜎𝑖𝑖1/5 is retained in 

both cases. (a) Position-dependent charge number on Cl− at a series of metal electric 

potentials. (b) Distribution of the solvent molecule density in the presence of Cl− at 

0.939 V. (c) Double-layer capacitance as a function of the metal electric potential for KCl 

(blue) and KI (red). 

 

4 Concluding Remarks 

We have formulated a hybrid density-potential functional to describe many-body 

interactions in the EDL in the grand-canonical ensemble. The model features: (1) the 

constant-potential description of the EDL, thus allowing the potential of zero charge to 
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be determined from the surface charging relation; (2) the consistent determination of 

the metal-solution gap which varies as a function of the electrode potential; (3) the 

treatment of ion specific adsorption and the accompanying partial charge transfer using 

the Anderson-Newns theory of chemisorption. 

The model captures major electronic and electrostatic phenomena in the EDL, including 

oscillations of electron density and electric potential in the metal lattice, metal electron 

spillover, accumulation (depletion) of counterions (coions) in the diffuse layer, field-

dependent orientation of solvent molecules, and partial charge transfer. For the case 

without electrosorption, it gives the typical two-humped camel-shaped curve of the 

differential double-layer capacitance (Cdl). A closer approach of the solution phase 

increases metal electron density in the solution compartment, which elevates the Cdl and 

decreases the pzc. In the case with consideration of electrosorption phenomena, partial 

charge transfer leads to the surface depolarization phenomenon. 

From the perspective of accuracy and self-consistency, the presented fully analytical 

model has certain limitations. Firstly, the entire solution phase is treated classically at the 

mean-field level. Fluctuation effects and correlations are not considered.80-81 Secondly, it 

uses empirical force relations describing the short-range interactions between the metal 

and solution particles, though the parameters in the empirical relations could be 

determined from DFT calculations. Thirdly, it employs the simple TFDW theory to 

describe metal electrons, which can be replaced with more advanced functionals (e.g. 

ref.82). These will be important frontiers to expand upon in future work in theory and 

computation.  
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